812.

Trigonometrijski i eksponencijalni oblik

TEKST ZADATKA

Izračunati:

(1+i3)15(1i)20+(1i3)15(1+i)20\frac{(-1+i\sqrt3)^{15}}{(1-i)^{20}}+\frac{(-1-i\sqrt3)^{15}}{(1+i)^{20}}

REŠENJE ZADATKA

Zapisati brojeve u trigonometrijskom obliku : z=z(cosφ+isinφ).z=|z|\cdot(\cos{\varphi}+i\sin{\varphi}).

1+i3=2(cos2π3+isin2π3)1i=2(cos(π4)+isin(π4))1i3=2(cos(2π3)+isin(2π3))1+i=2(cosπ4+isinπ4)-1+i\sqrt3=2\big(\cos\frac{2\pi}3+i\sin\frac{2\pi}3\big) \\ 1-i=\sqrt2\big(\cos(-\frac{\pi}4)+i\sin(-\frac{\pi}4)\big) \\ -1-i\sqrt3=2\big(\cos(-\frac{2\pi}3)+i\sin(-\frac{2\pi}3)\big) \\ 1+i=\sqrt{2}\big(\cos{\frac{\pi}{4}}+i\sin{\frac{\pi}{4}}\big)

Uvrstiti trigonometrijske oblike kompleksnih brojeva u početni izraz.

(2(cos2π3+isin2π3))15(2(cos(π4)+isin(π4)))20+(2(cos(2π3)+isin(2π3)))15(2(cosπ4+isinπ4))20\frac{(2\big(\cos\frac{2\pi}3+i\sin\frac{2\pi}3\big))^{15}}{(\sqrt2\big(\cos(-\frac{\pi}4)+i\sin(-\frac{\pi}4)\big))^{20}}+\frac{(2\big(\cos(-\frac{2\pi}3)+i\sin(-\frac{2\pi}3)\big))^{15}}{(\sqrt{2}(\cos{\frac{\pi}{4}}+i\sin{\frac{\pi}{4}}))^{20}}

Primeniti formulu za stepenovanje kompleksnog broja: (r(cosα+isinα))n=rn(cos(nα)+isin(nα))\big(r(\cos{\alpha}+i\sin{\alpha})\big)^n=r^n(\cos(n\cdot\alpha)+i\sin(n\cdot\alpha))

215(cos(152π3)+isin(152π3))(2)20(cos(20π4)+isin(20π4))+215(cos(152π3)+isin(152π3))(2)20(cos(20π4)+isin(20π4))215(cos10π+isin10π)210(cos(5π)+isin(5π))+215(cos(10π)+isin(10π))210(cos5π+isin5π)\frac{2^{15}\big(\cos(15\cdot\frac{2\pi}3)+i\sin(15\cdot\frac{2\pi}3)\big)}{(\sqrt2)^{20}\big(\cos(-20\cdot\frac{\pi}4)+i\sin(-20\cdot\frac{\pi}4)\big)}+\frac{2^{15}\big(\cos(-15\cdot\frac{2\pi}3)+i\sin(-15\cdot\frac{2\pi}3)\big)}{(\sqrt{2})^{20}(\cos(20\cdot\frac{\pi}{4})+i\sin(20\cdot\frac{\pi}{4}))} \\ \frac{2^{15}\big(\cos10\pi+i\sin10\pi\big)}{2^{10}\big(\cos(-5\pi)+i\sin(-5\pi)\big)}+\frac{2^{15}\big(\cos(-10\pi)+i\sin(-10\pi)\big)}{2^{10}(\cos5\pi+i\sin5\pi)}

Primeniti formulu za količnik kompleksnog broja: z1z2=z1z2(cos(φ1φ2)+isin(φ1φ2)).\frac{z_1}{z_2}=\frac{|z_1|}{|z_2|}(\cos(\varphi_1-\varphi_2) + i\sin(\varphi_1-\varphi_2)).

25(cos(10π(5π))+isin(10π(5π)))+25(cos(10π5π)+isin(10π5π))25(cos15π+isin15π)+25(cos(15π)+isin(15π)2^5 \cdot(\cos(10\pi-(-5\pi))+i\sin(10\pi-(-5\pi))) +2^5\cdot(\cos(-10\pi-5\pi)+i\sin(-10\pi-5\pi))\\ 2^5 (\cos15\pi+i\sin15\pi) +2^5(\cos(-15\pi)+i\sin(-15\pi)

Svesti uglove na prvi kvadrant.

25(cosπ+isinπ)+25(cosπisinπ)2^5 (\cos{\pi}+i\sin{\pi}) +2^5(\cos{\pi}-i\sin{\pi})
DODATNO OBJAŠNJENJE

Zapisati kompleksne brojeve u algebarskom obliku.

25(1+i0)+25(1i0)25253232642^5(-1+i\cdot 0) + 2^5(-1-i\cdot 0)\\ -2^5-2^5\\ -32-32 \\ -64

Balkan Tutor Sva Prava Zadržana © 2025

Politika privatnosti