567.

Logaritamska jednačina

TEKST ZADATKA

Rešiti jednačinu:

log100x2=logx10(log1010alog10xa)\log_{100}x^2=\log_{\sqrt{x}}10\bigg(\log_{10}10a-\bigg|\log_{10}\frac xa\bigg|\bigg)

REŠENJE ZADATKA

Postaviti uslove jednačine:

x>0x1x>aa0a>0x\gt0 \quad\land\quad x\not=1 \quad\land\quad x\gt a \quad\land\quad a\not=0 \quad\land\quad a\gt0
DODATNO OBJAŠNJENJE

Primeniti osnovnu osobinu logaritama: logaxy=logax+logay, x>0, y>0, a>0, a1\log_axy=\log_ax+\log_ay, \ x\gt0,\ y \gt0,\ a\gt0, \ a\not=1

log100x2=logx10(log1010+log10alog10xa)\log_{100}x^2=\log_{\sqrt{x}}10\bigg(\log_{10}10+\log_{10}a-\bigg|\log_{10}\frac xa\bigg|\bigg)

Primeniti osnovnu osobinu logaritama: logaa=1, a>0, a1\log_aa=1, \ a\gt0, \ a\not=1

log100x2=logx10(1+log10alog10xa)\log_{100}x^2=\log_{\sqrt{x}}10\bigg(1+\log_{10}a-\bigg|\log_{10}\frac xa\bigg|\bigg)

Drugačije zapisati osnove logaritama:

log102x2=logx1210(1+log10alog10xa)\log_{10^2}x^2=\log_{x^{\frac 12}}10\bigg(1+\log_{10}a-\bigg|\log_{10}\frac xa\bigg|\bigg)

Primeniti osnovnu osobinu logaritama: logasxs=logax, x>0, a>0, a1, s1\log_{a^s}x^s=\log_ax, \ x\gt0,\ a\gt0, \ a\not=1, \ s\not=1

log10x=logx1210(1+log10alog10xa)\log_{10}x=\log_{x^{\frac 12}}10\bigg(1+\log_{10}a-\bigg|\log_{10}\frac xa\bigg|\bigg)

Primeniti osnovnu osobinu logaritama: logasx=1slogax, x>0, a>0, a1, s1\log_{a^s}x=\frac 1s\log_ax,\ x\gt0, \ a\gt0, \ a\not=1, \ s\not=1

log10x=2logx10(1+log10alog10xa)\log_{10}x=2\log_{x}10\bigg(1+\log_{10}a-\bigg|\log_{10}\frac xa\bigg|\bigg)

Primeniti osnovnu osobinu logaritama: logba=1logab, a>0, b>0, a1, b1\log_ba=\frac 1 {\log_ab}, \ a\gt0,\ b\gt0, \ a\not=1, \ b\not=1

log10x=2log10x(1+log10alog10xa)\log_{10}x=\frac2{\log_{10}x}\bigg(1+\log_{10}a-\bigg|\log_{10}\frac xa\bigg|\bigg)

Osloboditi se zagrade množenjem:

log10x=2log10x+2log10alog10xlog10xalog10x\log_{10}x=\frac2{\log_{10}x}+\frac {2\log_{10}a}{\log_{10}x}-\frac{|\log_{10}\frac xa|}{\log_{10}x}

Pomnožiti izraz sa log10x:\log_{10}x:

log102x=2+2log10alog10xa\log^2_{10}x=2+2\log_{10}a-|\log_{10}\frac xa|

Balkan Tutor Sva Prava Zadržana © 2025

Politika privatnosti