835.

Trigonometrijski i eksponencijalni oblik

TEKST ZADATKA

Odrediti sve kompleksne brojeve zz za koje važi:

z2=1i3z^2=1-i\sqrt3

REŠENJE ZADATKA

Zapisati broj 1i31-i\sqrt3 u trigonometrijskom obliku : z=z(cosφ+isinφ).z=|z|\cdot(\cos{\varphi}+i\sin{\varphi}).

1i3=2(cos5π3+isin5π3)1-i\sqrt3=2\big(\cos\frac{5\pi}3+i\sin\frac{5\pi}3\big)

Zameniti 1i31-i\sqrt3 saz2.z^2.

z2=2(cos5π3+isin5π3)z1=(2(cos5π3+isin5π3))12z2=(2(cos11π3+isin11π3))12z^2=2\big(\cos\frac{5\pi}3+i\sin\frac{5\pi}3\big) \\ z_1=\bigg(2\big(\cos\frac{5\pi}3+i\sin\frac{5\pi}3\big)\bigg)^{\frac12} \quad\land\quad z_2=\bigg(2\big(\cos\frac{11\pi}3+i\sin\frac{11\pi}3\big)\bigg)^{\frac12}

Primeniti formulu za stepenovanje kompleksnog broja: (r(cosα+isinα))n=rn(cos(nα)+isin(nα))\big(r(\cos{\alpha}+i\sin{\alpha})\big)^n=r^n(\cos(n\cdot\alpha)+i\sin(n\cdot\alpha))

z1=2(cos(125π3)+isin(125π3))z2=2(cos(1211π3)+isin(1211π3))z1=2(cos5π6+isin5π6)z2=2(cos11π6+isin11π6)z_1=\sqrt2\bigg(\cos\bigg(\frac12\cdot\frac{5\pi}3\bigg)+i\sin\bigg(\frac12\cdot\frac{5\pi}3\bigg)\bigg) \quad\land\quad z_2=\sqrt2\bigg(\cos\bigg(\frac12\cdot\frac{11\pi}3\bigg)+i\sin\bigg(\frac12\cdot\frac{11\pi}3\bigg)\bigg) \\ z_1=\sqrt2\bigg(\cos\frac{5\pi}6+i\sin\frac{5\pi}6\bigg) \quad\land\quad z_2=\sqrt2\bigg(\cos\frac{11\pi}6+i\sin\frac{11\pi}6\bigg)

Zapisati kompleksni broj u algebarskom obliku.

z1=22 (3+i)z2=22 (3i)z_1=\frac{\sqrt2}2\ (-\sqrt3+i) \quad\land\quad z_2=\frac{\sqrt2}2\ (\sqrt3-i)

Balkan Tutor Sva Prava Zadržana © 2025

Politika privatnosti