820.

Trigonometrijski i eksponencijalni oblik

TEKST ZADATKA

Izračunati:

16\sqrt[6]{-1}

REŠENJE ZADATKA

Zapisati broj 1-1 u eskponencijalnom obliku z=zeφiz=|z|\cdot e^{\varphi \cdot i}

1eiπ6\sqrt[6]{1\cdot e^{i\cdot \pi}}

Primeniti formulu za n-ti koren kompleksnog broja: zk=zn  eφ+2kπn, k{0,1,2,...,n1}z_k=\sqrt[n]{|z|} \ \cdot \ e^{\frac{\varphi+2k\pi}{n}}, \ k\in\{0, 1, 2, ..., n-1 \}

16eiπ+2kπ6,k{0,1,2,3,4,5}\sqrt[6]{1} \cdot e^{i \cdot \frac{\pi+2k\pi}{6}} , \quad k \in\{0, 1, 2, 3, 4, 5\}

Izračunati konkretne vrednosti za k{0,1,2,3,4,5}.k \in\{0, 1, 2, 3, 4, 5 \}.

z0=eπ6i=32+12iz1=eπ+2π6i=eπ2i=iz2=eπ+4π6i=e5π6i=32+12iz3=eπ+6π6i=e7π6i=3212iz4=eπ+8π6i=e3π2i=iz5=eπ+10π6i=e11π6i=3212iz_0=e^{\frac{\pi}{6}i} = \frac{\sqrt{3}}{2}+\frac{1}{2}i\\ z_1=e^{\frac{\pi+2\pi}{6}i}=e^{\frac{\pi}{2}i} = i\\ z_2=e^{\frac{\pi+4\pi}{6}i}=e^{\frac{5\pi}{6}i} = -\frac{\sqrt{3}}{2}+\frac{1}{2}i\\ z_3=e^{\frac{\pi+6\pi}{6}i}=e^{\frac{7\pi}{6}i} =-\frac{\sqrt{3}}{2}-\frac{1}{2}i\\ z_4=e^{\frac{\pi+8\pi}{6}i}=e^{\frac{3\pi}{2}i} = -i\\ z_5=e^{\frac{\pi+10\pi}{6}i}=e^{\frac{11\pi}{6}i} = \frac{\sqrt{3}}{2}-\frac{1}{2}i

Balkan Tutor Sva Prava Zadržana © 2025

Politika privatnosti