809.

Trigonometrijski i eksponencijalni oblik

TEKST ZADATKA

Izračunati:

(1+i31i)20\bigg(\frac{1+i\sqrt3}{1-i}\bigg)^{20}

REŠENJE ZADATKA

Odrediti trigonometrijski oblik kompleksnog broja 1+i31+i\sqrt3 po formuli: z=z(cos(arg(z))+isin(arg(z))).z=|z|\cdot(\cos{(\text{arg}(z))}+i\sin{(\text{arg}(z))}).

1+i3=2(cosπ3+isinπ3)1+i\sqrt3=2\big(\cos\frac{\pi}3+i\sin\frac{\pi}3\big)
DODATNO OBJAŠNJENJE

Odrediti trigonometrijski oblik kompleksnog broja 1i1-i po formuli: z=z(cos(arg(z))+isin(arg(z))).z=|z|\cdot(\cos{(\text{arg}(z))}+i\sin{(\text{arg}(z))}).

1i=2(cos(π4)+isin(π4))1-i=\sqrt2\big(\cos(-\frac{\pi}4)+i\sin(-\frac{\pi}4)\big)
DODATNO OBJAŠNJENJE

Uvrstiti trigonometrijske oblike kompleksnih brojeva u početni izraz.

(2(cosπ3+isinπ3)2(cos(π4)+isin(π4)))20(2(cosπ3+isinπ3))20(2(cos(π4)+isin(π4)))20\bigg(\frac{2\big(\cos\frac{\pi}3+i\sin\frac{\pi}3\big)}{\sqrt2\big(\cos(-\frac{\pi}4)+i\sin(-\frac{\pi}4)\big)}\bigg)^{20} \\ \frac{\big(2\big(\cos\frac{\pi}3+i\sin\frac{\pi}3\big)\big)^{20}}{\big(\sqrt2\big(\cos(-\frac{\pi}4)+i\sin(-\frac{\pi}4)\big)\big)^{20}}

Primeniti formulu za izračunavanje stepena kompleksnog broja: (r(cosα+isinα))n=rn(cos(nα)+isin(nα))\big(r(\cos{\alpha}+i\sin{\alpha})\big)^n=r^n(\cos(n\cdot\alpha)+i\sin(n\cdot\alpha))

220(cos(20π3)+isin(20π3))(2)20(cos(20π4)+isin(20π4))220(cos(20π3)+isin(20π3))210(cos(5π)+isin(5π))\frac{2^{20}\big(\cos(20\cdot\frac{\pi}3)+i\sin(20\cdot\frac{\pi}3)\big)}{(\sqrt2)^{20}\big(\cos(-20\cdot\frac{\pi}4)+i\sin(-20\cdot\frac{\pi}4)\big)} \\ \frac{2^{20}\big(\cos(\frac{20\pi}3)+i\sin(\frac{20\pi}3)\big)}{2^{10}\big(\cos(-5\pi)+i\sin(-5\pi)\big)}

Svesti uglove na prvi kvadrant.

220(cos(2π3)+isin(2π3))210(cosπ+isinπ)\frac{2^{20}\big(\cos(\frac{2\pi}3)+i\sin(\frac{2\pi}3)\big)}{2^{10}\big(\cos\pi+i\sin\pi\big)}

Primeniti formulu za količnik kompleksnog broja: z1z2=z1z2(cos(φ1φ2)+isin(φ1φ2)).\frac{z_1}{z_2}=\frac{|z_1|}{|z_2|}(\cos(\varphi_1-\varphi_2) + i\sin(\varphi_1-\varphi_2)).

220210(cos(2π3π)+isin(2π3π))210(cos(π3)+isin(π3))\frac{2^{20}}{2^{10}}\big(\cos(\frac{2\pi}3-\pi)+i\sin(\frac{2\pi}3-\pi)\big) \\ 2^{10}\big(\cos(-\frac{\pi}3)+i\sin(-\frac{\pi}3)\big)

Zapisati kompleksni broj u algebarskom obliku.

210(12+i(32))29(1i3)5125123i2^{10}\big(\frac12+i\cdot(-\frac{\sqrt3}2)\big) \\ 2^9\big(1-i\cdot\sqrt3\big) \\ 512-512\sqrt3i

Balkan Tutor Sva Prava Zadržana © 2025

Politika privatnosti