27.

Osnovni tablični integrali

TEKST ZADATKA

Odrediti integral:

(1+cos3xcos2x39+x2) dx\int{(\frac{1 + \cos^3{x}}{\cos^2{x}} - \frac{3}{9 + x^2}) \ dx}

REŠENJE ZADATKA

Primeniti pravilo za sabiranje/oduzimanje integrala: f(x)±g(x)=f(x)dx±g(x)dx\int{f(x) \pm g(x) } = \int{f(x)dx \pm \int{g(x)dx}}

1+cos3xcos2x dx39+x2 dx\int{\frac{1 + \cos^3{x}}{\cos^2{x}} \ dx} - \int{ \frac{3}{9 + x^2}\ dx}

Ponovo primeniti pravilo za sabiranje/oduzimanje integrala: f(x)±g(x)=f(x)dx±g(x)dx\int{f(x) \pm g(x) } = \int{f(x)dx \pm \int{g(x)dx}}

1cos2x dx+cos3xcos2x dx39+x2 dx\int{\frac{1}{\cos^2{x}} \ dx} +\int{\frac{\cos^3{x}}{\cos^2{x}}\ dx} - \int{ \frac{3}{9 + x^2}\ dx}

Skratiti zajednički činilac cos2x.\cos^2{x}.

1cos2x dx+cosx dx39+x2 dx\int{\frac{1}{\cos^2{x}} \ dx} +\int{\cos{x}\ dx} - \int{ \frac{3}{9 + x^2}\ dx}
1cos2x dx+cosx dx319+x2 dx\int{\frac{1}{\cos^2{x}} \ dx} +\int{\cos{x}\ dx} - 3\int{ \frac{1}{9 + x^2}\ dx}

Primeniti tablične integrale: 1cos2x dx=tgx+C,\int{\frac{1}{\cos^2{x}} \ dx} = \tg{x} + C , cosx dx=sinx+C\int{\cos{x}\ dx = \sin{x + C}} i dxa2+x2=1aarctg(xa)+C,a0\int{\frac{dx}{{a^2 + x^2}}} = \frac{1}{a}\arctg(\frac{x}{a}) + C, a \ne 0

tg(x)+sin(x)313arctg(x3)+C\tg(x) + \sin(x) - 3 \cdot \frac{1}{3} \cdot \arctg(\frac{x}{3}) + C

Srediti izraz.

tg(x)+sin(x)arctg(x3)+C\tg(x) + \sin(x) - \arctg(\frac{x}{3}) + C

Balkan Tutor Sva Prava Zadržana © 2025

Politika privatnosti