710.

Sistem jednačina

TEKST ZADATKA

Rešiti sistem jednačina.

x2+xy+y2=4x+xy+y=2x^2+xy+y^2=4 \\ x+xy+y=2

REŠENJE ZADATKA

Iz druge jednačine izraziti x.x.

x+xy+y=2    x=2y1+yx+xy+y=2 \implies x=\frac{2-y} {1+y}
DODATNO OBJAŠNJENJE

Uvrstiti xx u prvu jednačinu.

(2y1+y)2+2y1+yy+y2=444y+y2(1+y)2+2yy21+y+y24=0\bigg(\frac{2-y} {1+y}\bigg)^2+\frac{2-y} {1+y}\cdot y+y^2=4 \\ \frac {4-4y+y^2} {(1+y)^2}+\frac {2y-y^2} {1+y}+y^2-4=0

Svesti na zajednički imenilac i srediti izraz.

44y+y2(1+y)2+(2yy2)(1+y)(1+y)2+y2(1+y)2(1+y)24(1+y)2(1+y)2=044y+y2+(2yy2)(1+y)+y2(1+y)24(1+y)2(1+y)2=044y+y2+2y+2y2y2y3+y2(1+2y+y2)4(1+2y+y2)(1+y)2=044y+y2+2y+2y2y2y3+y2+2y3+y448y4y2(1+y)2=010yy2+y3+y4(1+y)2=0y1\frac {4-4y+y^2} {(1+y)^2}+\frac {(2y-y^2)(1+y)} {(1+y)^2}+\frac{y^2(1+y)^2}{(1+y)^2}-\frac{4(1+y)^2} {(1+y)^2}=0 \\ \frac {4-4y+y^2+(2y-y^2)(1+y)+y^2(1+y)^2-4(1+y)^2} {(1+y)^2}=0 \\ \frac {4-4y+y^2+2y+2y^2-y^2-y^3+y^2(1+2y+y^2)-4(1+2y+y^2)} {(1+y)^2}=0 \\ \frac {4-4y+y^2+2y+2y^2-y^2-y^3+y^2+2y^3+y^4-4-8y-4y^2} {(1+y)^2}=0 \\ \frac {-10y-y^2+y^3+y^4} {(1+y)^2}=0 \quad\land\quad y\not=-1

Da bi izraz bio jednak 0,0, brojilac mora biti jednak 0.0. Jednačina se svodi na:

10yy2+y3+y4=0y(10+yy2y3)=0y(y3+2y23y2+6y5y+10)=0y(y2(y2)3y(y2)5(y2))=0y((y2)(y2+3y+5))=0y(y2)(y2+3y+5)=0-10y-y^2+y^3+y^4=0 \\ -y(10+y-y^2-y^3)=0 \\ -y(-y^3+2y^2-3y^2+6y-5y+10)=0 \\ -y(-y^2(y-2)-3y(y-2)-5(y-2))=0 \\ -y(-(y-2)(y^2+3y+5))=0\\ y(y-2)(y^2+3y+5)=0

Rešenja za yy su:

y=0y2=0y2+3y+5=0y1=0y2=2y3=3+i112y4=3i112y=0 \quad\lor\quad y-2=0 \quad\lor\quad y^2+3y+5=0 \\ y_1=0 \quad\lor\quad y_2=2 \quad\lor\quad y_3=\frac {-3+ i\sqrt{11}} {2} \quad\lor\quad y_4=\frac {-3-i\sqrt{11}} {2}
DODATNO OBJAŠNJENJE

Uvrstiti y1=0,y_1=0, y2=2,y_2=2, y3=3+i112y_3=\frac {-3+ i\sqrt{11}} {2} i y4=3i112 y_4=\frac {-3-i\sqrt{11}} {2} u jednačinu x=2y1+y.x=\frac{2-y} {1+y}.

x1=201+0=21=2x2=221+2=03=0x3=23+i1121+3+i112=4+3i11223+i112=7i111+i11=3i112x4=23i1121+3i112=4+3+i11223i112=7+i111i11=3+i112x_1=\frac{2-0} {1+0}=\frac 21=2 \\ x_2=\frac{2-2} {1+2}=\frac03=0 \\ x_3=\frac{2-\frac {-3+ i\sqrt{11}} {2}} {1+\frac {-3+ i\sqrt{11}} {2}}=\frac{\frac {4+3- i\sqrt{11}} {2}} {\frac {2-3+ i\sqrt{11}} {2}}=\frac{7- i\sqrt{11}} {-1+ i\sqrt{11}}=\frac {-3-i\sqrt{11}} 2 \\ x_4=\frac{2-\frac {-3- i\sqrt{11}} {2}} {1+\frac {-3- i\sqrt{11}} {2}}=\frac{\frac {4+3+ i\sqrt{11}} {2}} {\frac {2-3- i\sqrt{11}} {2}}=\frac{7+i\sqrt{11}} {-1- i\sqrt{11}}=\frac {-3+i\sqrt{11}} 2
DODATNO OBJAŠNJENJE

Rešenje sistema je skup uređenih parova:

(2,0), (0,2),(3i112, 3+i112)  i  (3+i112, 3i112)(2,0), \ (0,2) , \bigg(\frac {-3-i\sqrt{11}} 2, \ \frac {-3+i\sqrt{11}} 2 \bigg)\ \text{ i }\ \bigg(\frac {-3+i\sqrt{11}} 2, \ \frac {-3-i\sqrt{11}} 2 \bigg)

Balkan Tutor Sva Prava Zadržana © 2025

Politika privatnosti