286.

Adicione formule

TEKST ZADATKA

Uprostiti izraz:

tg2x+ctg2x6tg2x+ctg2x+2\frac {\tg^2x+\ctg^2x-6} {\tg^2x+\ctg^2x+2}

REŠENJE ZADATKA

Primeniti osnovne relacije između trigonometrijskih funkcija: tgα=sinαcosα,ctgα=cosαsinα \tg{\alpha}=\frac {\sin{\alpha}} {\cos{\alpha}} , \ctg{\alpha}=\frac {\cos{\alpha}} {\sin{\alpha}}

sin2xcos2x+cos2xsin2x6sin2xcos2x+cos2xsin2x+2\frac {\frac {\sin^2x} {\cos^2x}+\frac {\cos^2x} {\sin^2x}-6} {\frac {\sin^2x} {\cos^2x}+\frac {\cos^2x} {\sin^2x}+2}

Svesti sve činioce izraza na isti imenilac:

sin2xsin2x+cos2xcos2x6sin2xcos2xsin2xcos2xsin2xsin2x+cos2xcos2x+2sin2xcos2xsin2xcos2x=sin4x+cos4x6sin2xcos2xsin2xcos2xsin4x+cos4x+2sin2xcos2xsin2xcos2x\frac {\frac {\sin^2x\sin^2x+\cos^2x\cos^2x-6\sin^2x\cos^2x} {\sin^2x\cos^2x}} {\frac {\sin^2x\sin^2x+\cos^2x\cos^2x+2\sin^2x\cos^2x} {\sin^2x\cos^2x}}=\frac {\frac {\sin^4x+\cos^4x-6\sin^2x\cos^2x} {\sin^2x\cos^2x}} {\frac {\sin^4x+\cos^4x+2\sin^2x\cos^2x} {\sin^2x\cos^2x}}

Osloboditi se dvojnog razlomka:

sin2xcos2x(sin4x+cos4x6sin2xcos2x)sin2xcos2x(sin4x+cos4x+2sin2xcos2x)\frac {\sin^2x\cos^2x(\sin^4x+\cos^4x-6\sin^2x\cos^2x)} {\sin^2x\cos^2x(\sin^4x+\cos^4x+2\sin^2x\cos^2x)}

Skratiti zajedničke činioce:

sin2xcos2x(sin4x+cos4x6sin2xcos2x)sin2xcos2x(sin4x+cos4x+2sin2xcos2x)=sin4x+cos4x6sin2xcos2xsin4x+cos4x+2sin2xcos2x\frac {\cancel{\sin^2x\cos^2x}(\sin^4x+\cos^4x-6\sin^2x\cos^2x)} {\cancel{\sin^2x\cos^2x}(\sin^4x+\cos^4x+2\sin^2x\cos^2x)}=\frac {\sin^4x+\cos^4x-6\sin^2x\cos^2x} {\sin^4x+\cos^4x+2\sin^2x\cos^2x}

Prepoznati kvadrat binoma i primeniti formulu: (a±b)2=a2±2ab+b2(a\pm b)^2=a^2\pm2ab+b^2

(sin2xcos2x)24sin2xcos2x(sin2x+cos2x)2\frac {(\sin^2x-\cos^2x)^2-4\sin^2x\cos^2x} {(\sin^2x+\cos^2x)^2}
DODATNO OBJAŠNJENJE

Iskoristiti osnovnu relaciju između trigonometrijskih funkcija: sin2α+cos2α=1\sin^2{\alpha}+\cos^2{\alpha}=1

(sin2xcos2x)24sin2xcos2x12=(sin2xcos2x)24sin2xcos2x\frac {(\sin^2x-\cos^2x)^2-4\sin^2x\cos^2x} {1^2}=(\sin^2x-\cos^2x)^2-4\sin^2x\cos^2x

Izvući minus ispred zagrade:

((cos2sin2x))24sin2xcos2x=(cos2sin2x)24sin2xcos2x(-(\cos^2-\sin^2x))^2-4\sin^2x\cos^2x=(\cos^2-\sin^2x)^2-4\sin^2x\cos^2x

Primeniti formulu za kosinus dvostrukog ugla: cos2α=cos2αsin2α \cos{2\alpha}=\cos^2{\alpha}-\sin^2{\alpha}

cos22x4sin2xcos2x\cos^2{2x}-4\sin^2x\cos^2x

Primeniti formulu za sinus dvostrukog ugla: sin2α=2sinαcosα \sin{2\alpha}=2\sin{\alpha}\cos{\alpha}

cos22xsin22x\cos^2{2x}-\sin^2{2x}
DODATNO OBJAŠNJENJE

Primeniti formulu za kosinus dvostrukog ugla: cos2α=cos2αsin2α \cos{2\alpha}=\cos^2{\alpha}-\sin^2{\alpha}

cos22xsin22x=cos4x\cos^2{2x}-\sin^2{2x}=\cos{4x}

Balkan Tutor Sva Prava Zadržana © 2025

Politika privatnosti