264.

Svođenje na oštar ugao

TEKST ZADATKA

Uprostiti izraz:

sin4(π+x)cos4(πx)cos2(π2+x)sin2(xπ2)sin3(πx)+cos3(x2π)cos(xπ2)+sin(x+π2)\frac {\sin^4{(\pi+x)}-\cos^4{(\pi-x)}} {\cos^2{\big(\frac {\pi} 2 +x\big)}-\sin^2{\big(x-\frac {\pi} 2 \big)}} - \frac {\sin^3{(\pi-x)}+\cos^3{(x-2\pi)}} {\cos{\big(x-\frac {\pi} 2 \big)}+\sin{\big(x+\frac {\pi} 2 \big)}}

REŠENJE ZADATKA

Svesti trigonometrijske funkcije na oštar ugao:

(sinx)4(cosx)4(sinx)2(cosx)2sin3x+cos3xsinx+cosx\frac {(-\sin{x})^4-(-\cos{x})^4} {(-\sin{x})^2-(-\cos{x})^2} - \frac {\sin^3{x}+\cos^3{x}} {\sin{x}+\cos{x}}
DODATNO OBJAŠNJENJE

Srediti izraz.

sin4xcos4xsin2xcos2xsin3x+cos3xsinx+cosx\frac {\sin^4{x}-\cos^4{x}} {\sin^2{x}-\cos^2{x}} - \frac {\sin^3{x}+\cos^3{x}} {\sin{x}+\cos{x}}

Primeniti formulu za zbir kubova: a3+b3=(a+b)(a2ab+b2) a^3+b^3=(a+b)(a^2-ab+b^2)

sin4xcos4xsin2xcos2x(sinx+cosx)(sin2xsinxcosx+cos2x)sinx+cosx\frac {\sin^4{x}-\cos^4{x}} {\sin^2{x}-\cos^2{x}} - \frac {(\sin{x}+\cos{x})(\sin^2x-\sin{x}\cos{x}+\cos^2x)} {\sin{x}+\cos{x}}

Primeniti formulu za razliku kvadrata: a2b2=(ab)(a+b)a^2-b^2=(a-b)(a+b)

(sin2xcos2x)(sin2x+cos2x)sin2xcos2x(sinx+cosx)(sin2xsinxcosx+cos2x)sinx+cosx\frac {(\sin^2{x}-\cos^2{x})(\sin^2x+\cos^2x)} {\sin^2{x}-\cos^2{x}} - \frac {(\sin{x}+\cos{x})(\sin^2x-\sin{x}\cos{x}+\cos^2x)} {\sin{x}+\cos{x}}

Primeniti osnovnu relaciju između trigonometrijskih funkcija: sin2α+cos2α=1\sin^2{\alpha}+\cos^2{\alpha}=1

(sin2xcos2x)1sin2xcos2x(sinx+cosx)(1sinxcosx)sinx+cosx\frac {(\sin^2{x}-\cos^2{x})*1} {\sin^2{x}-\cos^2{x}} - \frac {(\sin{x}+\cos{x})(1-\sin{x}\cos{x})} {\sin{x}+\cos{x}}

Skratiti zajedničke činioce:

(sin2xcos2x)1sin2xcos2x(sinx+cosx)(1sinxcosx)sinx+cosx=1(1sinxcosx)=11+sinxcosx=sinxcosx\frac {\cancel{(\sin^2{x}-\cos^2{x})}*1} {\cancel{\sin^2{x}-\cos^2{x}}} - \frac {\cancel{(\sin{x}+\cos{x})}(1-\sin{x}\cos{x})} {\cancel{\sin{x}+\cos{x}}}=1 - (1-\sin{x}\cos{x})=1 - 1+\sin{x}\cos{x}=\sin{x}\cos{x}

Balkan Tutor Sva Prava Zadržana © 2025

Politika privatnosti