417.

Parcijalna integracija

TEKST ZADATKA

Odrediti integral:

x2arctgx1+x2 dx \int{\frac{x^2\arctg{x}}{1+x^2} \space dx}

REŠENJE ZADATKA

Integral x2arctgx1+x2 dx \int{\frac{x^2\arctg{x}}{1+x^2} \space dx} rešiti metodom parcijalne integracije. Za promenljive uu i dvdv bira se:

u=arctgxdv=x2x2+1 dxu=\arctg{x} \quad dv=\frac{x^2}{x^2+1}\space dx

Odrediti dudu i vv

du=1x2+1v=xarctgxdu=\frac{1}{x^2+1} \quad v=x-\arctg{x}

Primeniti formulu za parcijalnu integraciju: udv=uvvdu \int{u \cdot dv} = u \cdot v - \int{v \cdot du}

(xarctgx)arctgx(xarctgx)1x2+1 dx(x-\arctg{x})\cdot \arctg{x}- \int{(x-\arctg{x})\cdot \frac{1}{x^2+1}\space dx}

Srediti izraz:

(xarctgx)arctgxx1x2+1 dx+arctgxx2+1 dx(x-\arctg{x})\cdot \arctg{x}- \int{x\cdot \frac{1}{x^2+1}\space dx}+ \int{\frac{\arctg{x}}{x^2+1} \space dx}

Uvesti smene t1t_1it2:t_2:

x2+1=t1arctgx=t2x^2+1=t_1 \quad \arctg{x}=t_2

Odrediti izvode t1,t2t_1, t_2po x:x:

2xdx=dt1dx=(x2+1)dt22xdx=dt_1 \quad dx=(x^2+1)dt_2

Zameniti xx smenom t1t_1it2t_2

(xarctgx)arctgxxt1 dt12x+t2x2+1 dt(x2+1)(x-\arctg{x})\cdot \arctg{x}- \int{\frac{\cancel{x}}{t_1}\space \frac{dt_1}{2\cancel{x}}}+ \int{\frac{t_2}{\cancel{x^2+1}} \space dt\cancel{(x^2+1)}}

Rešiti tablične integrale:

(xarctgx)arctgx12lnt1+t222+C(x-\arctg{x})\cdot \arctg{x}- \frac{1}{2}\ln{t_1}+\frac{t_2^2}{2}+C

Vratiti smenu:

(xarctgx)arctgx12lnx2+1+arctg2x2+C(x-\arctg{x})\cdot \arctg{x}- \frac{1}{2}\ln{\lvert x^2+1\rvert}+\frac{\arctg^2{x}}{2}+C

Balkan Tutor Sva Prava Zadržana © 2025

Politika privatnosti