Stepenovanje korena

Pravilo glasi:

(an)m=(a1n)m=amn\bigl(\sqrt[n]{a}\bigr)^{m} = \bigl(a^{\tfrac{1}{n}}\bigr)^{m} = a^{\tfrac{m}{n}}

Jednako važna je i obrnuta formulа, korenovanje stepena:

amn=(am)1n=amn\sqrt[n]{a^{m}} = \bigl(a^{m}\bigr)^{\tfrac{1}{n}} = a^{\tfrac{m}{n}}

Dakle, podizanje korena na stepen ili izvlačenje korena iz stepena daje isti eksponentni izraz am/na^{m/n}.

Primeri

(a)2=a122=a1=a(\sqrt{a})^2 = a^{\tfrac{1}{2} \cdot 2} = a^1 = a (x3)4=x43\bigl(\sqrt[3]{x}\bigr)^4 = x^{\tfrac{4}{3}} m35=m35\sqrt[5]{m^3} = m^{\tfrac{3}{5}} (x2y3)=(x2y3)12=x212y312=x1y32=xy32\sqrt{\bigl(x^2 y^3\bigr)} = (x^2 y^3)^{\tfrac{1}{2}} = x^{2\cdot\tfrac{1}{2}} \, y^{3\cdot\tfrac{1}{2}} = x^1 \, y^{\tfrac{3}{2}} = x \, y^{\tfrac{3}{2}}
  1. Koren od korena (složen koren):
anm=(a1n)1m=a1n1m=a1mn\sqrt[m]{\sqrt[n]{a}} = \bigl(a^{\tfrac{1}{n}}\bigr)^{\tfrac{1}{m}} = a^{\tfrac{1}{n}\cdot \tfrac{1}{m}} = a^{\tfrac{1}{mn}}

Balkan Tutor Sva Prava Zadržana © 2025

Politika privatnosti